EN
您现在的位置:首页> 新闻资讯> 行业新闻

【光电智造】相机标定究竟在标定什么?

2023-03-02

相机标定可以说是计算机视觉/机器视觉的基础,但是初学者不易上手,本文将给读者整理一遍相机标定的逻辑,并在文末回答评论区提出的问题。分为以下内容:

 

●相机标定的目的和意义

●相机成像过程的简化与建模

●针孔相机模型的数学描述

●标定针孔相机模型的参数

 

相机标定的目的和意义

 

我们所处的世界是三维的,而照片是二维的,这样我们可以把相机认为是一个函数,输入量是一个场景,输出量是一幅灰度图。这个从三维到二维的过程的函数是不可逆的。

 

 

相机标定的目标是我们找一个合适的数学模型,求出这个模型的参数,这样我们能够近似这个三维到二维的过程,使这个三维到二维的过程的函数找到反函数。

 

 

这个逼近的过程就是「相机标定」,我们用简单的数学模型来表达复杂的成像过程,并且求出成像的反过程。标定之后的相机,可以进行三维场景的重建,即深度的感知,这是计算机视觉的一大分支。

 

相机成像过程的简化与建模

 

提到相机的成像,从根本上来说,就是在讨论相机的镜头。固定结构的相机镜头决定了一对固定的物像共轭关系,所谓「共轭」,意思是镜头前某个位置的物,它的像一定在镜头后的某个位置,这个关系是固定的。举个最简单的例子,无穷远处的物必然会在镜头的焦点处成像。这里说的固定结构,指的是镜头的焦距固定,光圈固定。

 

 

上图是Canon EF 85mm/F1.2L II USM,我们可以找一个与这个镜头具有相同的物像共轭关系的凸透镜来等效这个镜头,我们把这个凸透镜称作等效透镜,用朝外的双箭头表示,如下图。

 

 

这里说的等效,只是针对物像共轭关系的等效,也就是光路的等效,镜头中之所以用了形态各异的透镜主要是为了消除各种各样的像差,提高清晰度。换句话说,等效透镜的目的绝不是为了在实际应用中取代镜头(毕竟一个镜头都好贵),只是为了帮助我们理解。这样我们就可以画出相机拍摄到清晰的蜡烛燃烧场景的草图,如下图。

 

 

其中,Q是火苗尖的物点,q是火苗尖的像点 ,P是蜡烛根的物点,p是蜡烛根的像点,O是等效透镜的中心(也称为光心),红色虚线表达了物点Q 到 像点q 成像光路中的两条,绿色虚线表达了物点 P 到像点p 成像光路中的两条,红色是CCD面。

 

注意,刚刚说到我们画的是「相机拍摄到清晰的蜡烛燃烧场景的草图」,这表明像点q 和像点 p 刚好落在CCD面上,那么假如像点没有落在CCD面上,也就是CCD拍摄的图像不清晰,我们如何确定像点的位置?

 

 

根据几何光学的作图法,由过等效透镜的焦点 F 的光线和过光心 O 的光线,我们可以作出像点 p 与 q 的位置,现在我们对「相机拍摄到清晰的蜡烛燃烧场景的草图」同样用作图法,只考虑 Q 与 q 点的物像关系。

 

 

这样我们就能够得到成像光路中的4条:①是过透镜上边沿的光路,④是过透镜下边沿的光路,②是过等效透镜焦点的光路,③是过光心的光路。它们都表达了物点 Q 与像点 q 的物像共轭关系,显然③过光心的光路是最容易建立物像共轭关系数学模型,因此我们用③来代表成像光路,对相机成像过程进行简化。

 

 

到这里我们发现,简化后的相机模型和针孔相机的成像原理很相似,因此我们把简化后的相机模型称为针孔相机模型。上图中的 f 是针孔相机模型的焦距,但请注意,此针孔相机「焦距」非彼等效透镜「焦距」,只是借用了「焦距」汇聚光线的概念,表达的是CCD面到光心的距离。

 

 

但是我们说的是简化后的相机模型和针孔相机的成像原理仅仅是相似,绝不能等同,由于针孔相机的原理是光沿直线传播,所以真实的针孔相机是没有「焦距」的概念的,也不存在像差,其物像关系不具有一一对应性,如下图。

 

 

所以准确的讲把相机的成像过程简化成针孔相机模型,只是借用了针孔相机中简单的数学关系来表达一些本来难以表达的数学关系,使得数学上大大降低了复杂性,但是这个简化的代价同样很大,它本身不考虑像差(虽然针孔相机模型补充了消畸变模型)、不考虑景深(针孔相机模型物像关系不具有一一对应性,认为凡是物总能成清晰像),并且假定等效透镜是薄透镜。所以说针孔相机模型仅仅是一种真实相机的成像过程的近似,甚至于我们可以说这是一种非常粗糙的近似,这使得这个模型对越符合针孔相机模型的真实相机近似程度越高,如网络摄像头、手机镜头、监控探头等等。

 

针孔相机模型的描述

 

我们对相机成像过程进行简化和建模得到了针孔相机模型,如下图示。

 

 

首先建立相机坐标系,我们以光心 O 为坐标系的原点, X 与 Y 方向是CCD像素排列的水平和竖直两个方向, Z 方向垂直与CCD面,建立右手坐标系,这是一个三维坐标系。其次,我们还需要建立CCD标号坐标系:以CCD左上角像素标号为原点,CCD像素排列的水平和竖直两个方向为 U 与 V 方向,这是一个二维坐标系。为了方便描述,我们之后将把针孔相机模型对称翻转过来,如下图所示,从数学的角度,它们是等价的。

 

 

 

标定针孔相机模型的参数

 

所以在标定板中,印刷了拓扑结构,广泛应用的是棋盘格和圆点格,这两种之所以成为主流,不仅是因为它们的拓扑结构明确且均匀,更重要的是检测其拓扑结构的算法简单且有效。棋盘格检测的是角点,只要对拍摄到的棋盘格图像横纵两个方向计算梯度就可获得;而圆点格的检测只需要对拍摄到的圆点格图样计算质心即可。假如你开发了一套非常完美的检测人脸全部特征的算法,你完全可以用你的照片当作标定板。

 

按照我的经验,圆点格的效果应该是好于棋盘格,因为圆点质心的「透视不变性」要比棋盘格的角点稳定的多。下图是同样尺寸、同样比例棋盘格和圆点在最大重投影误差处的误差对比,红色十字是提取的角点/质心,绿色圆圈是针孔相机模型计算出来认为的角点/质心位置。

 

 

下图是棋盘格与圆点格的重投影误差图,显然圆点格的重投影误差的误差空间要小。

 

 

但是圆点格的检测似乎是Halcon的专利(存疑),因此OpenCV和Matlab标定工具箱用的是棋盘格,要用圆点格得要自己写算法。下文中提到的标定板说的都是棋盘格。

 

标定板的第二大作用是把标定板中的角点变换到相机坐标系下的坐标 (X,Y,Z) 。对于标定的初学者来说,很容易忽略的一点是标定板是具有标定板坐标系的。换句话说,标定板中的每个角点,在标定板坐标系下的位置是确定并且是已知的。

 

 

 

 

至于参数训练的方法,最小二乘,极大似然估计等等,很容易找到相关的资料,在此不再赘述。在知乎站内,我推荐看这篇文章,讲如何求解标定参数。【机器视觉】张氏法相机标定 - 知乎专栏

 

如果用OpenCV或Matlab标定工具箱进行标定,需要给出棋盘格的物理尺寸,这其实就是在建立标定板坐标系,从测量的角度讲,标定板的精度是相机标定精度的基准,是误差传递链上的第一个环节。所以为了使针孔相机模型更逼近真实相机,对标定板的质量有以下要求(按重要性顺序):

 

1.标定板的平面度高,棋盘格是直角;

2.标定板每个格子尺寸的高一致性;

3.真实尺寸与标称尺寸的差异小。

 

最后,向祖师爷张正友致敬。

 

转自:知乎

作者:许翔翔(复旦大学 光学工程博士) 

链接:https://zhuanlan.zhihu.com/p/30813733

免责声明:我们尊重原创,封面及文中图片影像版权归属原作者所有,如有侵犯您的权益请及时联系我们删除

联系我们